COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

Warning

This material has been reproduced and communicated to you by or on behalf of the University of Melbourne pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further copying or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice
Drug regulation of serum lipids

Foundations of Biomedical Science
MEDS90001

Dr Michelle Hansen
Pharmacology & Therapeutics
mjhansen@unimelb.edu.au

References
• Katzung, Basic & Clinical Pharmacology Ch 35
• Australian Medicines Handbook
Objectives

• explain the types of dyslipidaemias
• appreciate the rationale for instituting non-pharmacological approaches as well as lipid lowering and other agents to improve prognosis
• describe the mechanisms of action of drugs used to lower blood lipids
• demonstrate an understanding of the adverse effects of drugs used to alter blood lipids
Dyslipidaemia

- 1950s and 60s
 - recognition that high blood cholesterol correlated with increased risk of IHD
- dyslipidaemia = abnormal lipid profile
 - can lead to atherosclerosis, increased risk of MI, stroke
 - hypercholesterolaemia
 - high risk > 7.5 mmol/L total cholesterol, treatment target < 4 mmol/L
 - hypertriglyceridaemia
 - mixed hyperlipidaemia

http://www.web-books.com/eLibrary/Medicine/Cardiovascular/Images/Athero.gif
Serum lipid levels

• “normal” total cholesterol levels not necessarily healthy

<table>
<thead>
<tr>
<th></th>
<th>Normal fasting levels</th>
<th>Target levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mmol/l</td>
<td>mmol/l</td>
</tr>
<tr>
<td>Total Cholesterol:</td>
<td>0.0 - 5.5</td>
<td>< 4.0</td>
</tr>
<tr>
<td>Triglyceride:</td>
<td>0.5 - 2.0</td>
<td>< 2.0</td>
</tr>
<tr>
<td>HDL Cholesterol:</td>
<td>0.9 - 2.2</td>
<td>> 1.0</td>
</tr>
<tr>
<td>LDL Cholesterol:</td>
<td>0.0 - 3.4</td>
<td>< 2.5</td>
</tr>
<tr>
<td>Chol/HDL Ratio:</td>
<td>0.0 - 5.0</td>
<td></td>
</tr>
</tbody>
</table>

(Medical Journal of Australia, 2001)
Treatment for dyslipidaemia

- establish fasting plasma lipid profile for diagnosis
- consider cardiovascular status and risk factors
- treat secondary causes
 - obesity, diabetes, hypothyroidism
- manage modifiable risk factors
 - stop smoking
 - avoid alcohol
 - weight reduction
 - increase exercise
 - these can all reduce risk of cardiovascular events independently of lipid lowering
- modify diet
Targets for hypercholesterolaemia

• Diet
 – reduce *saturated* and *trans* fat intake
 – introduce
 • Mediterranean diet – reduces risk, not LDL (bad) cholesterol
 • plant sterol esters – reduce LDL cholesterol
 • fish oils – reduce triglycerides, increase HDL (good) cholesterol
 – lifestyle/diet intervention for people at low risk

• Synthesis, transport and uptake
 – Drug targets for intervention for people at > moderate risk
Sources of cholesterol

- cholesterol derived from
 - diet (in animal fat, eggs - absorbed via intestine)
 - no Recommended Daily Allowance (RDA) set
 - de novo synthesis (primarily in liver) adequate

```
acetyl-CoA → acetoacetyl-CoA → 3-hydroxy-3-methylglutaryl-CoA
```

```
HMG-CoA reductase
```

```
Rate-limiting step
```

```
HOOC–CH2–C–(CH2)2–OH

mevalonic acid
```

```
CH3

squalene
```

```
cholesterol
```

Fate of cholesterol

- stored in liver for export in VLDL (very low density lipoproteins)
- converted to bile acids, stored in gall bladder to emulsify fat
- used for steroid hormones and vitamin D synthesis
- used for membrane synthesis
Cholesterol transport

- transported in plasma lipoproteins:
 - Chylomicrons
 - Very low density lipoproteins (VLDL)
 - Intermediate density lipoproteins (IDL)
 - Low density lipoproteins (LDL = “bad” cholesterol)
 - High lipoproteins (HDL = “good” cholesterol)

- complex metabolism (see Fig 35.1 Katzung)
Cholesterol transport and metabolism
Cholesterol transport

• transported in plasma lipoproteins:
 – Chylomicrons
 – Very low density lipoproteins (VLDL)
 – Intermediate density lipoproteins (IDL)
 – Low density lipoproteins (LDL = “bad” cholesterol)
 – High lipoproteins (HDL = “good” cholesterol)

• complex metabolism (see Fig 35.1 Katzung, Fig 1 Toth)

• lipoproteins that contain apolipoprotein (apo) B-100 can transport lipids into artery walls = “bad”
 – LDL, IDL, VLDL

• HDL can retrieve cholesterol from artery wall = “good”

• “normal” total cholesterol levels not necessarily healthy
Discovery of statins as HMG-CoA reductase inhibitors

Kuroda and Endo (Tokyo Noko University), 1970s
• reasoned that microbes would synthesise sterol synthesis inhibitors to combat other microbes that require sterols for growth
• screened 6,000 microbial strains
• discovered mevastatin (from \textit{Penicillium citrinum})

\textit{Endo} (1992) \textit{J Lipid Res} 33: 1569-1582

Merck, late 1970s
• isolated lovastatin (from \textit{Aspergillus terreus})

Statins approved for clinical use the late 1980s
Treatment of hypercholesterolaemia with statins

Lova, atorva, fluva, prava, simvastatin

- decrease mevalonic acid and therefore cholesterol synthesis
 - compensatory increase in hepatic LDL receptors
 - increased clearance of LDL (with bound cholesterol) from blood
 - decreased plasma total cholesterol and LDL (and TGs to lesser extent)
 - increased plasma HDL
Statin effect on LDL cholesterol

Figure 1. Statin effect on LDL cholesterol [F] [44]

F Derived from a meta-analysis of short-term trials. Height of bar indicates the point estimate for the dose.

Statins -
HMG-CoA reductase inhibitors

- Indications: hypercholesterolaemia (high LDL)
 mixed hyperlipidaemia (high LDL, TGs)

- Greater benefit after 1-2 years use
- Poor compliance related to perceived lack of efficacy rather than side effects
Precautions

- avoid grapefruit juice! (common metabolic pathway increases toxicity of statins)
- drug-drug interactions due to cytochrome pathways
- statin levels are
 - increased by some antibiotics, antifungals and fibrates
 - decreased by phenytoin, barbiturates, glitazones
- mild elevation of serum aminotransferase = transaminase
 - < 2% patients
 - measure of liver function, monitor at 2-4 month intervals, reduce dose if necessary
- minor increases in creatine kinase
 - can lead to muscle pain and tenderness
Statins -
HMG CoA reductase inhibitors

• common adverse effects
 – mild GI symptoms, headache, insomnia, dizziness

• rare but serious adverse effects
 – myopathy (minimised by UQ10 treatment?)
 – rhabdomyolysis (breakdown of muscle resulting in myoglobin release into the bloodstream)
 – renal failure
 – hepatitis, liver failure

• contra-indicated in pregnancy
 – impaired fetal myelination

• withhold during infection, pre-surgery, post-trauma
Treatment of hypercholesterolaemia with bile acid sequestrants/resins

Cholestyramine, colestipol

• oral route - granular preparations, taken with liquid
• non-absorbable macromolecules
 – polymeric cationic exchange resins
• bind bile acid (cholesterol metabolites) preventing gut absorption
 – up to 10-fold increase in bile excretion
• increased demand for cholesterol for bile acid synthesis causes upregulation of hepatic LDL receptors, removal of LDL from plasma and more cholesterol metabolism
Bile acid sequestrants/resins

- Indications: hypercholesterolaemia
 mixed hyperlipidaemia

- common adverse effects
 - abdominal discomfort, bloating, constipation, flatulence

- rare adverse effects
 - increased TGs, faecal impaction, decreased absorption of fat soluble vitamins, steathorea

- decreases absorption of other drugs
 - not just anions, also drugs with neutral or cationic charge
 (including glycosides, thiazides, statins, aspirin)
 - give other drugs hours before or after resin
Ezetimibe

• specifically inhibits cholesterol absorption in the intestine by binding to a sterol transporter (Niemann-Pick C1-like 1 protein)

• does not affect absorption of bile acids, fat soluble vitamins

• lowers LDL
Ezetimibe

Possible side effects

• diarrhea, headache, tiredness
• allergic reactions, severe joint or stomach pain

• can be used alone in statin-intolerant patients, or in combination with all other lipid-lowering agents including statins (to reduce statin dose)
Treatment of hypercholesterolaemia with nicotinic acid / niacin

- Nicotinic acid = niacin = vitamin B3

- mechanism unclear
 - decrease secretion of VLDL particles from liver
 - reduces plasma LDL and triglycerides (so also for mixed hyperlipidaemia)
 - increases HDL
 - lowers potentially atherogenic lipoprotein (a)
 Lp(a) formed from LDL is found in plaques, inhibits thrombolysis
Nicotinic acid / niacin

• common adverse effects
 – vasosodilation, flushing, hypotension
 – nausea, vomiting
 – tolerance develops to flushing as gastric upsets

• rare adverse effects
 – itching
 – glucose intolerance
 – uric acid retention
 – may increase hepatic impairment

• not widely used except in combination
Treatment of hypertriglyceridaemia with fibrates

Gemfibrozil, fenofibrate

- agonists at nuclear receptors, so regulate gene expression
 - peroxisome proliferator activated receptor α
 - increased synthesis of lipoprotein lipase (LPL)
- increase lipolysis of lipoprotein triglyceride
- moderate reduction in plasma triglycerides
- moderate increase in HDL
- variable effects on LDL
- generally used as adjunct to dietary changes for high TGs, mixed hyperlipidaemia, and second line therapy for hypercholesterolaemia
Fibrates - PPARα agonists

Precautions

• mild elevation of serum aminotransferase
 – monitor at 3 month intervals, reduce dose or discontinue if necessary

• common adverse effects
 – nausea, dry mouth, headache, rash

• rare adverse effects
 – arrhythmias
 – gallstones
 – photosensitivity
 – impotence
 – depression
Treatment of hypertriglyceridaemia with fish oils

Omega 3 fatty acids e.g. eicoapentanoic acid (EPA) docosahexanoic acid (DHA) by diet (oily fish) or capsule

• reduce triglycerides and VLDL

Plant sources such as flaxseed, canola, walnuts and their derived vegetable oils contain α-linolenic acid (ALA) which can be converted to EPA/DHA, but conversion is variable
Treatment of hypertriglyceridaemia with fish oils

Possible side effects:
• aftertaste, fishy burps
• diarrhea, abdominal discomfort
• blood thinning effect

Severe hypertriglyceridemia requires polytherapy
Drug regulation of serum lipids

<table>
<thead>
<tr>
<th></th>
<th>↓ LDL</th>
<th>↑ LDL receptor</th>
<th>↑ HDL</th>
<th>↓ TGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statins</td>
<td>✓ ✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bile acid resins</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ezetimibe</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niacin</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>↓ Lp(a)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Fibrates</td>
<td>↓ ↑</td>
<td></td>
<td>✓</td>
<td>✓ LPL</td>
</tr>
<tr>
<td>Fish oil</td>
<td>↓ VLDL</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Where do the drugs work?

Ezetimibe

Bile acid resins

Statins

Fibrates